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Abstract
We study a model that consists of two identical unidirectionally coupled one-
dimensional arrays of chaotic phase oscillators. The time series (TS) of the
distance between the arrays is analysed. The probability distribution functions
(PDFs) of these distances typically display tails with power-law dependence.
The autocorrelation function and the PDF of the laminar phases of these TS
depend strongly on the stroboscopic section.

1. Introduction

Chaotic behaviour means that two trajectories starting from slightly different initial conditions
diverge exponentially as time goes on [1]. An important result is that the trajectories of chaotic
systems can be synchronized if they are suitably coupled together [2]. It has been found that
chaotic synchronization between two identical subsystems is a canonical example where on–
off intermittency can take place [2]. On–off intermittency is observed when chaotic motion
on an invariant manifold loses its stability when a control parameter is changed [3]. In the
synchronization of identical chaotic systems, the invariant manifold is the state where the
variables of the subsystems have the same values all the time. In on–off intermittency, the
system spends long periods of time in the vicinity of the invariant manifold. These intervals are
interrupted by short bursts where the system moves away from the invariant manifold [3]. The
field of chaos synchronization is a multidisciplinary field of research with several interesting
applications [4].

The problem of synchronization between single arrays has received special attention in
the last few years. For instance, chaotic synchronization between two one-dimensional (1D)
lattices of oscillators has been considered [5]. We mainly study the time series (TS) of the
distance between two coupled 1D arrays. In the context of chaotic synchronization, the kind
of intermittency that we find in our model shows properties that differ from those observed in
on–off intermittency.
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2. The model

Here, we describe the model of two coupled 1D arrays of limit-cycle oscillators. The
configuration of this model is known as the master–slave configuration. The model reads

dθj
dt

= βK[sin(θj−1 − θj ) + sin(θj+1 − θj )]

dφj

dt
= βK[sin(φj−1 − φj ) + sin(φj+1 − φj )] + 	[sin(θj − φj )]

(1)

where j = 1, N , θj and φj are the phases of the master and slave arrays respectively, and t

represents time. K = 1 if iT � t < iT +T andK = −1 if iT +T � t < (i+2)T , where i is an
even integer and 2T is the period of modulation; that is, the factor K is a periodic step function.
For the sake of definition, we have set T = 1. β is the coupling between the oscillators along
the 1D array, and 	 is the coupling constant across the arrays. The typical parameters for the
model are: N = 33; β = 20.0; 	 ∼ 17.0. For the aforementioned parameters, the change of
sign of the coupling βK leads to spatio-temporal chaos (STC) where a typical trajectory in each
1D array oscillates between a sink and a node whose stability alternates [6]. The behaviour
of the master array in equation (1) is qualitatively similar to its discrete-time version [6].
Physically, equation (1) describes a system of 1D arrays of phase-locked loops (PLL). These
are electric circuits where the variables are on tori of dimension N [7]. We underline that
Poincaré sections which differ by a phase T are symmetric. We will define a stroboscopic
section along the time axis. The phase of this section is given by the number τ , where τ = t

(mod(T )), jT � t < jT + T , and j is an integer.

3. Statistics of the transverse fluctuations

Now we study the statistical distribution of the transverse fluctuations H . These are defined
as Hn = ( ∑j=N

j=1

√
[sin(θj − φj )]2 + [1 − cos(θj − φj )]2

)/
N . This is the distance between

the two arrays. H is a continuous-time function, while Hn represents the values of H at times
where τ = t (mod(T )).

3.1. The section at τ = 0

In order to have a framework to compare the different sections τ , let us first consider in detail
the section at τ = 0. We have studied the TS of log10 Hn for three different values of 	.
For 	 = 9 the TS has been characterized as a first-order Markov process with two symbols.
However, as 	 becomes larger, this description is no longer useful.

In figure 1 we show the probability distribution functions (PDFs) evaluated numerically
for the TS described above. The data set for each TS consists of 2 × 106 points. We
clearly observe that for 	 = 15 and 17 there is only a single large hump. Instead, for
	 = 9 there are two humps which account for the Markovian description. The PDF
for log10(Hn) with 	 = 17 can be approximated using a hyperbolic PDF [8]. This is
displayed in figure 1(c) (long dashed curves). A hyperbolic distribution P is defined as
log10(P ) = [−a

√
δ2 + (x − µ)2 + b(x − µ)] + log10(C), where C is a normalization factor.

In our case, x = log10 H(t) and the PDF parameters are a = 1.11, b = 0.238, δ = 1.437
and µ = −7.88. Barndorff and Nielsen introduced the hyperbolic PDF in 1977 motivated
by the study of statistical laws in geology. These PDFs also found applications in turbulence
and finance [8]. The asymptotes of this PDF are given by −a|x − µ| + b(x − µ). It is clear
that in the region where the asymptotes prevail, the respective PDF P̃ of Hn has power-law
tails, i.e. there are right and left tails with a power-law dependence. However, this does not
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Figure 1. Plot of log10 P versus log10 Hn with τ = 0, N = 33 and β = 20.0 for (a) 	 = 9,
(b) 	 = 15 and (c) 	 = 17. The dashed curve represents the hyperbolic PDF.

indicate any eventual divergence since the argument of the PDF P̃ is bound to be due to the
finite size of Hn; that is, the PDF P̃ behaves as a truncated Levy distribution law for extreme
values [8]. The most probable value of Hn, which we label Hmp, is found from the equation
dP/dHn = 0 [8]. For Hn � Hmp, the right tail of the PDF P̃ of Hn is given by P̃ ∼ H−0.87

n ,
while for Hn � Hmp, the left tail of the PDF of Hn is given by P̃ ∼ H 1.34

n . For comparison,
we mention that the distance r between two coupled 1D maps has a PDF that has a power-law
form for small r while it decays like exp(−αr2) for large r [2]. The functional form of the
latter contrasts not only with the PDF P̃ of Hn at τ = 0 but with all PDFs at τ 	= 0, as we see
below.

Another useful quantity to characterize the TS is given by the moments of order
p:D(κ, p) = 〈|Hn+κ − Hn|p〉 where 〈· · ·〉 represents the statistical average of Hn. After
some suitable p-dependent shift, D(κ, p) is plotted in figure 2(a). We do not see any clear-cut
scaling region which would define a set of Hurst exponents [8]. Instead, what we see is that
as κ increases, D(κ, p) saturates for all moments p. This suggests that the data set of the TS
given by σ(κ) = log10(Hn+κ/Hn) tends to converge to a single PDF as κ is increased. This is
indeed what we see in figures 2(b) and (c). In figure 2(b) we observe the PDF of σ(κ = 1) for
two different realizations (solid curve) and σ(κ = 2) (dashed curve). In figure 2(c) we display
σ(κ = 3), σ(κ = 4), σ(κ = 30), σ(κ = 40) (solid curves). To a large extent, the plots in
figure 2(c) are indistinguishable from each other. In this figure, we observe that a hyperbolic
PDF curve (short dashed curve) approximates the aforementioned PDF for σ(κ = 40). In
figure 2(c) σ(κ = 2) (long dashed curve) is displayed for comparison.
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Figure 2. (a) Plot of log10 D(p, κ) versus log10 κ for different p. (b) Plot of log10 P versus σ(κ)
for κ = 1 (solid curve) and κ = 2 (dashed curve). (c) The same as (b) but for κ = 3, 4, 30, 40
(solid curve), κ = 2 (long dashed curve) and the corresponding hyperbolic PDF fit (short dashed
curve).

3.2. The other sections at τ 	= 0

Now, we will show that the PDFs for log10(Hn) and σ(κ) for different κ can be substantially
different from those PDFs at τ = 0. As τ becomes larger than τ = 0, the 1D arrays on
average become more disordered in space. The extent of order is measured in terms of the
Kuramoto order parameter R(t), which is defined as R(t) = (∣∣ ∑j=N

j=1 exp(iαj )
∣∣)/N , where

αj = θj+1(t) − θj (t). It is also said that R(t) measures the phase coherence. In particular,
if R(t) = 1, all the oscillators are in phase. When R(t) = 0, the phases αi are typically
distributed uniformly between 0 and 2π . As the 1D array evolves in time, a succession of
spatially coherent and incoherent structures arises [6]. In figure 3(a) we observe the evolution
of R(t). Typically, the largest (smallest) extent of disorder in the 1D arrays, which occurs
when R(t) reaches a minimum (maximum), correlates with the largest (smallest) distances
H(t) between the two 1D arrays. The PDF for the TS of log10(Hn) and σ(κ = 40) for
different values of τ are shown in figures 3(b) and (c), respectively. In figure 3(b) we observe
that the PDF for log10(Hn) at τ = 0.1 (solid curve) can barely be described by a hyperbolic
PDF. Instead, the right tail of the PDF for τ = 0.2 (short dashed curve) must be described
using two consecutive power laws. One of these extends over four orders of magnitude while
the other spreads over three orders of magnitude. When τ = 0.47 (long dashed curves),
typically R(t) is close to its local minima. For this value of τ , the right tail of the related PDF
seems to have a faster decay than a hyperbolic PDF. In figure 3(c), we display the PDF of
σ(κ = 40) for different values of τ . The PDF for τ = 0.1 (solid curve) can still be largely
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Figure 3. (a) Plot of R(t) versus time t for 	 = 17 and β = 20. (b) Plot of log10 P versus log10 Hn

for τ = 0.1 (solid curve), τ = 0.2 (short dashed curve) and τ = 0.47 (long dashed curve). (c) Plot
of log10 P versus σ(κ) for τ = 0.1 (solid curve) τ = 0.2 (short dashed curve) and τ = 0.3 (long
dashed curve).

described by a hyperbolic PDF. However, those PDFs for τ = 0.2 (short dashed curve) and
for τ = 0.3 (long dashed curve) have left and right tails that have to be described using at least
two consecutive power-law functions. The reason for this lies in the τ -dependent separation
that nearby trajectories undergo when R ∼ 0. Now we consider the correlation dimension of
the TS log10(Hn). We do not find any clear-cut scaling region in figure 4(a). In this figure,
the smallest slope in absolute value corresponds to an embedding dimension of two. The next
largest slope in absolute value corresponds to an embedding dimension of three, and so on.
Figure 4(a) suggests that this correlation dimension is no smaller than six.

3.3. Distribution of the laminar phases

Now we show that the features of the laminar phases in the present model deviate from those
models of chaotic synchronization where on–off intermittency sets in [2]. It has been found in
these studies that the distribution of the laminar phase duration l obeys the l−3/2 power law [2].
This distribution law is derived from the related linearized differential equations [2]. In these
studies, in order to characterize the laminar phase duration in the series Hn, it is necessary to
take a threshold value η such that if Hn < η, the series Hn is in the laminar phase.

In figure 4(b) we observe the PDF of l for the TS Hn at τ = 0 for different values of the
threshold η. The cores of the PDF P(l) can be approximated by exponential distributions for
all these threshold values η. This is in contrast to the TS Hn at τ = 0.47, where the 1D arrays
show small coherence, i.e. R(t) � 1. In this case, the PDF P(l) shows a power-law behaviour
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Figure 4. (a) Plot of the correlation dimension log10(C(ε,m)) versus ε for different values of
embedding m. (b) Plot of log10 P versus the laminar length L of the TS Hn at τ = 0 for different
thresholds. (c) The same as (b) but for τ = 0.47 for different thresholds.

over some range of laminar values l for a given range of threshold values η. This is shown in
figure 4(c). This is reminiscent of the PDF P(l) found in models where on–off intermittency
arises [2]. With respect to the case when τ = 0, it is worth mentioning that there is a mechanism
for intermittency in systems with symmetry, as in our model, which is caused by small additive
noise or periodic perturbations in systems that have homoclinic attracting orbits. This system
has been studied by Stone and Holmes [9]. They have shown that the distribution of the length
of the laminar phases has an exponential tail in contrast to on–off intermittency, where the
distribution of the length of the laminar phases has a power-law tail [9].

4. Conclusions

In this paper, we have studied a model of two coupled identical 1D arrays of phase oscillators
at the threshold of complete synchronization. The 1D arrays are driven periodically and show
STC. Many statistical properties of the TS Hn of this system depend on the sampling section
τ . For large coupling 	, we have found that it is possible to describe the PDF of log10 Hn

with hyperbolic distributions for the section τ = 0. This implies that the tails of the PDF for
Hn behave as truncated Levy laws. For other sections τ 	= 0, we have found that the tails of
the PDF for Hn can be described with two consecutive power laws or with even faster decays.
A similar situation occurs for the TS of the rates of change σ(κ) = log10(Hn+κ/Hn). The
PDF of σ(κ) quickly tends to a limit as κ increases. In fact for κ ∼ 4, this limit is almost
reached. The autocorrelation function of the TS Hn decays exponentially fast, or even faster
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than exponential depending on the section τ . We have found that the correlation dimension
of the TS Hn is no smaller than six. Possibly this supports the fact that our TS Hn behaves to
some extent like noise. The PDF of the laminar phases depends strongly on the section τ . We
find that these distributions can be exponential or even follow a power law. This suggests that
these PDF could be described in terms of the Tsallis statistics [10].
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